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The use of the superspace formalism is extended to the

description and refinement of the homologous series of

modular structures with two symmetry-related modules with

different orientations. The lillianite homologous series has

been taken as a study case. Starting from a commensurate

modulated composite description with two basic subsystems

corresponding to the two different modules, it is shown how a

more efficient description can be achieved using so-called

zigzag modulation functions. These linear zigzag modulations,

newly implemented in the program JANA2006, have very

large fixed amplitudes and introduce in the starting model the

two orientations of the underlying module sublattices. We

show that a composite approach with this type of function,

which treats the cations and anions as two separate subsystems

forming a misfit compound, is the most appropriate and robust

method for the refinements.
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1. Introduction

In the last few years structural studies have demonstrated that

the superspace formalism, originally developed for the study

of incommensurate structures (de Wolff, 1974; Janner &

Janssen, 1980a,b), can also be a very powerful and efficient

tool for dealing with the structural properties of commensu-

rate systems with large unit cells (Janssen et al., 1992; van

Smaalen, 2007; Janssen et al., 2007). Two recent very extreme

examples can be seen in Perez-Mato et al. (2006) and Perez-

Mato et al. (2007). A necessary condition for this type of

approach is that the structures have approximate sub-

periodicities defined by unit cells which are much smaller than

the actual unit cell of the structures. Typical examples are

series of layered compounds, which, through the stacking of a

small number of different types of layers and following

composition-dependent sequences, can reach very long

periods along the stacking direction (Elcoro et al., 2000).

When described using the superspace formalism the approx-

imate subperiodicity created by the layer widths is explicitly

and quantitatively used in the structure description. In other

words, the approximate atomic positional correlations created

by the layered properties of the structure, which are omitted

from the conventional crystallographic description, are

included in a superspace description, and constitute its basic

strength. While in a conventional approach, the difficulty of a

quantitative structure analysis increases with the size of the

unit cell, due to the increasing number of crystallographically

independent atoms, the complexity of the analysis using the

superspace method can become essentially independent of the

size of the unit cell.

Up to now this approach has been very successful in the

study of homologous series of layered compounds (Evain et



al., 1998; Perez-Mato et al., 1999; Elcoro et al., 2000, 2001;

Boullay et al., 2002; Darriet et al., 2002; Michiue et al., 2005;

Michiue et al., 2006; Lind & Lidin, 2003; Orlov et al., 2007). The

use of the superspace formalism allows the introduction of a

unified description of the whole series, with a number of

structural parameters smaller than in a conventional approach

and independent of the actual size of the unit cell. It also

predicts the three-dimensional space groups which are

observed (in general dependent on the specific member of the

series), which can be derived directly from the superspace

group that describes the symmetry of the whole series.

There are, however, many materials with large unit cells and

with underlying approximate subperiodicities which cannot be

reduced to layered models. An example would be the so-called

modular structures with modules of relatively simple internal

structures, which can be combined in various ways and with

different orientations (for a recent thorough review see

Ferraris et al., 2004). Typical modular structures have modules

which are infinite in one or two dimensions and have a form of

rods or slabs, respectively. One of the infinite dimensions

generally coincides with the short periodicity of the global

structure, whereas the periods of the other two crystal-

lographic axes are large and depend on the way the modules

combine. Modular structures can present considerable diffi-

culties in structure solution and refinement as they have large

unit cells and usually high degrees of pseudosymmetry. Their

reciprocal lattices often show strong reflections indicating the

sublattices of the modules, flanked by the weaker reflections

which are a consequence of the global periodicity. In this

respect their diffraction patterns resemble those of commen-

surately modulated structures.

This resemblance has motivated us to explore the power of

the superspace formalism for dealing with modular structures.

As modular and modulated structures are in principle two

different concepts, a superspace approach to modular struc-

tures implies the introduction of a relation between these two

different viewpoints. Here we report on the first step in this

direction: we have successfully applied the superspace method

to the analysis and refinement of modular structures of a series

of Pb–Bi–Ag sulfosalts, namely the lillianite homologues.

These materials are built from a simple repeat of the same

type of modules with two different orientations. In this paper

we will show that these structures can indeed be described

very efficiently as modulated structures within the superspace

formalism, if the usual methodology is extended. It should be

mentioned that the superspace framework has also been

applied recently to several members of the bismuthine–aiki-

nite modular series (Petřı́ček & Makovicky, 2006), originally

described in supercells. However, the character of such

modules is quite different: they are rod-like modules instead

of the slab-like modules of the lillianite series, which implies a

very different superspace description. The rod-like character

of the modules permits a standard superspace description as a

modulated structure with crenel-like atomic domains and with

well defined average positions.

The lillianite homologues are one of the simplest and most

investigated series of slab-like modular materials (Makovicky

& Karup-Møller, 1977a; Ferraris et al., 2004). The general

formula for this series is Anþ1Xnþ2 with A = Bi, Pb, Ag, Tl, Sb,

Nd, Yb, Fe, U, Cu, Eu, Mn, Er, Cr, Ho, Y and X = S, Se

(Makovicky & Balić-Žunić, 1993). The most prominent

members of this series are the Pb–Bi–Ag sulfosalts. The crystal

structures are composed of alternating blocks, the so-called

modules. The structure of these modules approximately

corresponds to the archetype galena structure (NaCl type).

These blocks are parallel to ð3; 1; 1ÞPbS and are in contact

through this plane, which is also the mirror plane of the unit-

cell twinning operation between two consecutive modules. The

structures in this family form homologous series. The homo-

logues vary in the width of the PbS modules which are

expressed as the number N of PbS6 octahedra running diag-

onally across an individual slab parallel to 0; 1; 1½ �PbS. Each

lillianite homologue is denoted as N1;N2 L, where N1 and N2 are

N values for two adjacent modules (Makovicky & Karup-

Møller, 1977a). We will focus on compounds with the same

size for all modules (N;NL members).

The general chemical formula of the N;NL homologue in the

series can be expressed as PbN�1�2xBi2þxAgxSNþ2. Fig. 1 shows

the structure of lillianite, Pb3Bi2S6, which is the homologue
4;4L of the series (Takagi & Takéuchi, 1972). The two galena-

like modules within the unit cell can be clearly seen. Other

basic members of the series with equal size for the modules are

heyrovskyite (Pb6Bi2S9) corresponding to the case 7;7L (Fig.

2), and ourayite (Pb4Ag3Bi5S13) which is the case 11;11L

(Makovicky & Karup-Møller, 1977b). In general, the cations

may have some kind of ordering within the galena modules.

We will disregard this possible order for the moment, and
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Figure 1
Lillianite projected on the ðx; yÞ plane. Space group Bbmm. Larger circles
represent the S atoms. Atoms with z ¼ 1

2 are represented with darker
colours than those at z ¼ 0. The number of octahedra in the chain of
octahedra and the reflection planes relating the two modules are
indicated. The unit-cell vectors of the sublattices of the modules in the
modular composite approach, given in x4, are indicated. The open circles
represent the idealized positions according to these sublattices. Only the x
coordinate of the pair of symmetry-independent Pb and S atoms on the
contact plane between the modules are free and have been adjusted.



consider that cations are indistinguishable and henceforth will

all be termed generically as Pb atoms.

From Figs. 1 and 2 it may seem obvious that the most direct

approach to develop a superspace description for these

structures would be to consider them as commensurate

modulated composite structures, with the two sets of modules

with different orientations being the two composite subsys-

tems. In fact, the reciprocal superlattices corresponding to the

two orientations of the galena blocks are clearly distinguish-

able in their diffraction diagrams, as expected in the usual

composites (see Fig. 4 in Makovicky & Karup-Møller, 1977a).

However, these systems have two peculiarities: the two

subsystems are symmetry related and some of the atoms are

shared by the two subsystems. While the first property,

although not present in the usual commensurate and incom-

mensurate composites is not unique, and a few cases are

known (Janner & Janssen, 1980b; van Smaalen, 1991; Perez-

Mato et al., 2006, 2007), the second feature is outside the usual

formalism for modulated composites, and represents a formal

problem for the application of the methods/programs devel-

oped for modulated composite systems.

We will briefly discuss the relationship between modular

and modulated structures. This will be followed by some

considerations about the choice of the reference sublattices in

the lillianite homologous series.

We will then show that it is possible to overcome the

problems of the composite approach by introducing an addi-

tional subsystem which contains the atoms at the interfaces of

the modules. Using this extension, it was possible to refine the

structures of lillianite and heyrovskyite satisfactorily using a

composite model in four-dimensional space. However, the

results of these refinements suggested a different, probably

simpler, approach, in which the structures are treated as

commensurately modulated structures with linear zigzag

modulation functions having very large amplitudes. To deal

with this type of modulation required the modification of the

refinement program JANA2006 (Petřı́ček et al., 2006) in order

to allow for these zigzag functions as alternative basic

modulations. Using these newly introduced functions, the

refinement of lillianite and heyrovskyite as modulated struc-

tures was straightforward.

2. Experimental

Two 200 mg powders with the stoichiometric composition of

heyrovskyite and lillianite, respectively, were prepared from

pure (99.999%) elements of Pb, Bi and S. The powders were

filled into quartz tubes which were then evacuated and sealed.

The tubes were heated in a tube oven at 573 K. After 24 h the

temperature was increased to 873 K and the samples were left

for 2 weeks in the oven and finally quenched to room

temperature in water. A tabular crystal (150� 65� 50 mm3)

of lillianite and a plate-like crystal (98� 48� 15 mm3) of

heyrovskyite were selected from the resulting samples. X-ray

diffraction intensities were collected at 298 K using graphite-

monochromated Mo K� radiation on a CCD-equipped

Bruker AXS four-circle diffractometer. The orientation and

preliminary dimensions of the unit cell were obtained, as

prerequisites for intensity integration, using the program

SMART. Intensity integration was carried out using the

SAINT+ software and an absorption correction was made with

the SADABS program. All programs are products of Bruker

AXS (Bruker AXS Inc., 2000). More details are shown in

Table 1.1
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Table 1
Experimental and crystal data for lillianite and heyrovskyite in the
conventional three-dimensional setting.

Lillianite Heyrovskyite

a (Å) 13.540 (3) 13.701 (2)
b (Å) 20.637 (4) 31.399 (5)
c (Å) 4.1103 (7) 4.1383 (6)
� (g cm�3) 7.125 7.274
� (mm�1) 75.40 77.24
Crystal colour Black Black
Absorption correction Empirical Empirical

Tmin 0.136 0.037
Tmax 0.316 0.187

No. of measured reflections 6296 5475
No. of unique reflections 1005 756
No. of observed reflections (I>3�) 619 455
Rint 0.0640 0.0874
2�max (�) 61.01 46.50
Range of h; k; l �19 � h � 19 �14 � h � 14

�27 � k � 29 �30 � k � 34
�5 � l � 5 �4 � l � 4

Figure 2
Heyrovskyite projected on the ðx; yÞ plane. Space group Bbmm. Larger
circles represent the S atoms. Atoms with z ¼ 1

2 are represented with
darker colours than those at z ¼ 0. The number of octahedra in the
octahedral chains is indicated.

1 Supplementary data for this paper are available from the IUCr electronic
archives (Reference: SN5074). Services for accessing these data are described
at the back of the journal.



3. Preliminary considerations: modular versus
modulated structures

When a structure is described as a modular structure the basic

point that is being stressed is the presence of certain fragments

(modules) that have simple approximate structures with

smaller unit cells. These modules are then joined to form the

more complex whole structure. When describing homologous

series of these structures, the modules can be idealized and

used as a reference for the description or determination of the

real structures. This approach is not far from the concept of

modulated structures, where we also take advantage of the

underlying smaller approximate periodicities. However, there

is an important additional ingredient that has to be introduced

if one wants to describe a modular structure as a modulated

one: the idealized lattices that one associates with the modules

and which are used as a reference have to be sublattices of the

actual lattice of the structure. In other words, in the idealized

structure with respect to which the modulation will be defined,

disjoint equivalent modules should be translationally coherent

according to the sublattice that is defined for the modules and

used for the description as a modulated structure.

This point can be illustrated with a simple theoretical

example. Let us consider the hypothetical perfect modular

crystal represented in Fig. 3. The modules are formed by a

perfect rectangular lattice defined by the parameters Ao and

Bo. The periodicity inter-modules, which is the only periodicity

of the global structure, is shown by a and b. These a and b

vectors do not correspond to a superlattice of the rectangular

lattice of the modules spanned by Ao and Bo. If we want to

describe this structure as a commensurately modulated

structure we have to consider an underlying lattice of the

modules which is not the idealized orthogonal lattice, but an

appropriate oblique sublattice which is commensurate with the

actual unit cell of the structure, as shown in Fig. 4. The rela-

tionship between its unit-cell vectors, aav and bav, with the

actual lattice a and b, is given by a ¼ 3aav þ bav and

b ¼ �aav þ 5bav.

The corresponding diffraction diagram depicted in Fig. 5

shows the set of main reflections defined by the lattice

spanned by a�av and b�av, and how the remaining reflections, in

general much weaker, can be considered satellites generated

by a modulation wavevector q ¼ b� ¼ �a�av=16þ 3b�av=16.

The structure with perfect orthogonal modules of Fig. 3 can

be obtained from the basic oblique lattice generated by aav

and bav by introducing a simple linear sawtooth modulation of

the atomic positions, as shown in Fig. 6. When represented in

superspace, the width � of the sawtooth function can be

chosen as 11/16; to achieve that 11 of the 16 basic atomic

positions within a supercell are occupied. The amplitudes u0;1

and u0;2 of the sawtooth function are given by �5:5ux and

5:5uy, where u ¼ ðux; uyÞ is the vector relating the vector aav of

the oblique subcell with the corresponding one, Ao, in the

orthogonal subcell of the perfect module: Ao ¼ aav þ u. The

equivalent vector relating Bo and bav is given by �3u. This

correlation is automatically fulfilled by the superspace

description and is forced by the value of the modulation

wavevector.

In a real structure the above construction may be seen to be

artificial if the oblique sublattice cell strongly deviates from

the cell of the ideal archetype structure of the module.

However, as shown in Fig. 5, the reciprocal space neatly

indicates the adequacy of a description in terms of an oblique

subcell rather than the archetypal one. Furthermore, one has

to consider that the oblique sublattice is only a virtual refer-

ence and, as shown above, the ideal module with the ortho-

gonal subcell can be simply obtained by a linear modulation,

which can be introduced a priori in the modulated model. In
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Figure 3
Hypothetical example of a modular structure with identical orthorhombic
modules ordered according to an oblique lattice which is not a
superlattice of the ideal orthorhombic lattice of the modules.

Figure 4
Description of the perfect modular configuration of Fig. 3 as a modulated
structure with respect to a basic reference oblique structure. The basic
reference lattice is depicted in black. Its unit-cell vectors are given by
aav ¼ ð5=16;�1=16; 0Þ and bav ¼ ð1=16; 3=16; 0Þ with respect to the
actual lattice unit cell indicated in blue. Numeric atomic labels refer to
their superspace embedding shown in Fig. 6. This figure is in colour in the
electronic version of this paper.



this way, the ideal archetype structure of the modules could be

used as reference for the real (modulated) structure of the

modules even when it strongly deviates from the oblique

sublattice introduced for a modulated description. In any case,

the ideal archetype structure of the modules is, in general, an

approximate description and is not forced by symmetry in a

real structure.

In the lillianite series studied below, the members which are

observed experimentally correspond to configurations in

which the ideal (orthogonal) subcells of the modules do not

deviate much from the oblique ones that make subsequent

modules coherent. In other words, the interconnection of the

modules within the structures is such that the ideal archetype

sublattices of the modules only require a small deformation to

become commensurate with the periodicity of the actual

global structure.

In general, the superspace formalism can have an important

flexibility in the choice of setting, each of which would change

the meaning of the internal subspace (Elcoro & Perez-Mato,

1996). Furthermore, the description of commensurate struc-

tures even has a much larger flexibility. One can describe the

same structure using different choices for the superspace

symmetry, the basic structure, the modulation wavevector etc.

In the following, we will consider several possibilities. In the

end, the decision about the most appropriate description will

emerge from the comparison of the resulting modulation

functions corresponding to the individual models. The best

model will be the one that describes the modulations with the

simplest functions and where the least variation is observed

between different members of the homologous series.

4. Preliminary considerations: approximate reference
sublattices in N,NL members of the lillianite series

The approximate sublattices of the two modules in lillianite

can be described by two body-centred subcells with vectors

a1 ¼ ð3=11;�1=11; 0Þ, b1 ¼ ð2=11; 3=11; 0Þ, c1 ¼ ð0; 0; 1Þ for

one block and a2 ¼ ð3=11; 1=11; 0Þ, b2 ¼ ð2=11;�3=11; 0Þ and

c2 ¼ c1 ¼ ð0; 0; 1Þ for the second modulus, both sublattices

being symmetry-related by a mirror plane my (here and in the

following we are using the setting of the experimental Bbmm

structure; Takagi & Takéuchi, 1972; Takeuchi & Takagi, 1974;

and its unit-cell vectors as a reference). Fig. 1 shows the

idealized structure of lillianite using these sublattices (open

circles in the figure). Only the atoms on the connecting plane

between two consecutive modules are displaced from the

idealized positions given by the subcells defined above. For

heyrovskyite the analogous subcell vectors are

a1 ¼ ð5=18;�1=18; 0Þ, b1 ¼ ð3=18; 3=18; 0Þ, c1 ¼ ð0; 0; 1Þ, and

those related by a mirror my.

In general, the two subcells fulfill the relation

3ai þ bi ¼ ð1; 0; 0Þ ð1Þ
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Figure 6
Sawtooth function along (a) x1 and (b) x2 describing the orthogonal
perfect modules of Fig. 3, using the oblique basic lattice and the
modulation wavevector indicated in Figs. 4 and 5. Points correspond to
the actual atomic positions realised in the structure. Numeric labels
correspond to those indicated in Fig. 4.

Figure 5
Scheme of the diffraction diagram of the hypothetical structure shown in
Fig. 3. The lattice of main reflections defined by the vectors a�av and b�av is
indicated together with the choice of the modulation vector q ¼ b�, for a
description as a modulated structure. Note that the diagram does not
have any qualitative signature revealing the orthogonal lattices of the
modules of the structure in direct space.



so that the size of the unit cell of the whole system along the x

direction is common for the whole homologous series. For a

generic member of the series, the approximate B-centred

subcells of the two modules can be generated by the vectors

a1;2 ¼
p

3pþ n
;�

1

3pþ n
; 0

� �

b1;2 ¼
n

3pþ n
;	

3

3pþ n
; 0

� �

c1;2 ¼ 0; 0; 1ð Þ: ð2Þ

The integers n and p in the equations above define the second

necessary commensurability relation of the subperiodicity of

the modules with the actual lattice of the global structure,

given by

pbi � nai ¼ ð0;	1; 0Þ: ð3Þ

Lillianite, which is the 4;4L homologue of the series, corre-

sponds to ðn; pÞ ¼ ð2; 3Þ, while for heyrovskyite and ourayite,

ðn; pÞ ¼ ð3; 5Þ and (5,7), respectively. To obtain these generic

idealized sublattices we have assumed the commensurability

of the sublattices with the lattice of the global subsystem, as

explained in the previous section. This condition together with

(1) is sufficient for restricting the possible idealized sublattices

of the modules to the form given by (2). It is important to note

that the reference sublattices that we associate with the

modules using (2) are in general not strictly orthogonal. In

contrast to the usual modular description of the series

(Makovicky & Karup-Møller, 1977a), in a modulated

description the sublattices of modules with the same orienta-

tion are forced to match exactly with each other and with the

actual lattice of the global system, at the cost of these refer-

ence galena sublattices being strained.

This strain can be readily calculated comparing the ideal

PbS archetype unit cell with that generated by the defined

vectors a1; b1; c1

� �
. As can be seen in Fig. 1, this strain is very

small.

In general, and for any member N;NL of the series, one can

systematically derive which choice of the ðn; pÞ parameters

yields the least strained module sublattices, as defined by (2).

This is discussed in detail in Appendix A. There it is shown

that, for a given N and considering an orthogonal unit cell for

the global structure, (2) would only yield sublattices

unstrained with respect to the PbS archetype if the integers n

and p defining the sublattice fulfill

n=p ¼ 2=3: ð4Þ

In addition, under these ideal conditions, these two integers

would be related to N by the relation

3pþ n ¼ 2N þ 4: ð5Þ

These two equations have in general non-integer solutions for

ðn; pÞ except for very specific N values (N ¼ 9; 20; . . .). The

integers ð2; 3Þ chosen above for lillianite satisfy (4), while

deviate from (5) by one unit. On the other hand, in the case of

heyrovskyite the pair ðn; pÞ ¼ ð3; 5Þ satisfies (5), but its ratio

has a minimal deviation from the ideal value given by (4).

These deviations lead to small strains in the reference

sublattices defined in (2). In general, for a given N, the best

choice for ðn; pÞ can be derived from the non-integers solu-

tions, ðn0; p0Þ, of the corresponding equations (4) and (5),

taking the integer values ðn; pÞ that are closer to these ðn0; p0Þ

values. Table 2 lists the results for the lowest N values. It can

be seen that the known sulfosalts N;NL of the lillianite series

correspond to N values for which the non-integer values

ðn0; p0Þ are rather close to integer values. This seems to indicate

that the stable phases are those allowing for the least distorted

archetype sublattices. Nevertheless, it is remarkable that the

member of 9;9L, where a sublattice given by ðn; pÞ ¼ ð4; 6Þ

could fulfill exactly the two matching conditions and therefore
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Table 2
Best ðn; pÞ values for N;NL members of the broad lillianite family.

ðn0; p0Þ values are the solution of equations (4) and (5). ðn; pÞ are rounded-up values of ðn0; p0Þ [for N ¼ 2 two different choices of ðn; pÞ were used for comparison].
a1, b1, c1, �, �, � are the parameters of the unit cell of the sublattice defined by equations (2), calculated from the experimental unit cell of the compound indicated
in the last column. The a1=c1 and b1=c1 values for an ideal undistorted sublattice are 1 and 21=2

’ 1:414, respectively.

N n0; p0 n; p a1=c1 b1=c1 � � � Compound

1 1.09, 1.64 1,2 1.003 1.215 90.6 90 90 CuEu2S3
a

2 1.45, 2.18 1,2 1.063 1.517 81.4 90 90 MnEr2S4
b

2 1.45, 2.18 2,2 0.931 1.512 96.5 90 90 MnEr2S4
b

3 1.81, 2.73 2,2 0.860 1.499 90.6 94.9 92.8 TlSb3S5
c

4 2.18, 3.27 2,3 1.007 1.488 87.1 90 90 Pb3Bi2S6
d

5 2.55, 3.81 – – – – – – –
6 2.91, 4.36 – – – – – – –
7 3.27, 4.91 3,5 1.012 1.379 91.1 90 90 Pb6Bi2S9

d

8 3.64, 5.45 – – – – – – –
9 4, 6 – – – – – – –
10 4.36, 6.55 – – – – – – –
11 4.72, 7.09 5,7 0.990 1.412 88.1 90 90 Pb4Ag3Bi5S13

e

12 5.09, 7.64 – – – – – – –
13 5.45, 8.18 – – – – – – –
14 5.82, 8.72 – – – – – – –
15 6.18, 9.27 – – – – – – –

References: (a) Lemoine et al. (1986); (b) Landa-Canovas & Otero-Diaz (1992); (c) Gostojić et al. (1982); (d) this work; (e) Makovicky & Karup-Møller (1984).



could accommodate a perfect galena structure as a sublattice,

has never been reported.

As can be seen in Table 2, the lower homologues of the

broader structural family, which however do not belong to Pb/

Bi sulfosalts, cope with somewhat higher distortions; e.g. for
2;2L homologues the choice of ðn; pÞ values becomes ambig-

uous, with two possible choices requiring relatively large

distortions of the sublattice. The value of 3pþ n due to the

integer truncation can vary between 2N þ 2 up to 2N þ 5. The

values for the observed homologues sensu strictu of lillianite

being 2N þ 3 (for lillianite) and 2N þ 4 (for heyrovskyite and

ourayite).

5. Description of N,NL members of the lillianite
homologous series as commensurate modular
composites

The reciprocal lattices associated with the sublattices of the

modules discussed in the previous section, and which we will

use in a composite description of the lillianite series, are

determined by the chosen pair of integers ðn; pÞ. The corre-

sponding reciprocal unit cells are given by

a�1;2 ¼ ð3;�n; 0Þ

b�1;2 ¼ ð1;	p; 0Þ

c�1;2 ¼ ð0; 0; 1Þ; ð6Þ

where we use the reciprocal unit cell of the observed global

structure as a reference. Equations (6) define two reciprocal

lattices describing the main reflections of the two modules in a

composite description. Following the usual approach for

composite structures in superspace (Janssen et al., 1992; van

Smaalen, 1991, 2007), the Bragg reflections can be indexed

with four indices in the form

H ¼ h1a�1 þ k1b�1 þ l1c�1 þm1q1 ¼ h2a�2 þ k2b�2 þ l2c�2 þm2q2;

ð7Þ

where the modulation wavevectors q1 and q2 are usually the

basis vector of the reciprocal lattice of subsystems 2 and 1,

respectively. As 3b�1 � a�1 ¼ �ð3b�2 � a�2Þ ¼ ð0; 3pþ n; 0Þ, a

natural choice for q1 and q2 may seem b�2 and b�1 , respectively,

or equivalent ones. However, as the two subsystems are

commensurate there are in fact other possibilities for the

choice of modulation wavevector which are more appropriate.

As an example, Fig. 7 shows a scheme of the ðh; k; 0Þ plane

of the diffraction diagram of heyrovskyite, where the lattices

of main reflections corresponding to the two subsystems are

highlighted. Although the extinction condition corresponding

to the B centring hides these underlying superlattices, they can

nevertheless be distinguished as corresponding to rather

strong reflections. Although the usual intensity hierarchy

between main reflections and pure satellites does not exist

here, one can see the more intense reflections clustered

around both sets of main reflections. It is clear from the figure

that the natural choice of the modulation wavevectors should

be along the b�av direction. b�1 � b�2 ¼ ð0; 2p; 0Þ, i.e. 10b� in the

case of heyrovskyite, fulfills this condition, and will be in

accordance with the usual choice in composites. However, as

suggested by Fig. 7, this modulation wavector is not the

optimum choice and in fact, if used, does not yield simple

atomic domains in superspace. This is not surprising as we are

dealing with a structure that does not fulfill one of the basic

assumptions in standard composites, namely that the modu-

lation of the composite subsystems originates from their

mutual interaction. In the present case, the basic modulation

describes the periodic sequence of the two modules. This

sequence is not produced by mutual interactions of the

modules, but rather has its origin in the cation deficiency of the

system with respect to the galena composition. The deficiency

is accommodated in the interfaces between consecutive

modules and, hence, the basic modulation has a different

origin than in a conventional composite. As suggested by the

scheme in Fig. 7, the best choice for the modulation wave-

vector is q1 ¼ �q2 ¼ b� ¼ ð0; 1; 0Þ. This wavevector is

consistent with the supercell of modules 1 and 2, realised in

the real structure, and what is most important, the atomic

positions when embedded in superspace aggregate into large

atomic domains.
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Figure 7
Scheme of the diffraction pattern of heyrovskyite on the plane ðh; k; 0Þ.
The lattices of main reflections corresponding to the two subsystems of
the modular composite approach defined in subsection 5.1 are outlined.
Reflections which are common to both sets are indicated in green. The
chosen modulation wavector is also indicated.



The superspace description of a composite requires the

introduction of the matrices Wi, which define the indexing

basis of reciprocal vectors employed in each subsystem with

respect to a common basis of reciprocal vectors (van Smaalen,

1991). In this case it is convenient to use as a common basis an

orthorhombic cell in accordance with the supercell of the

global structure. This is in contrast to the usual approach of

using one of the subsystems as a common basis. Furthermore,

the atoms on the interface between modules are shared by the

two subsystems, producing a formal problem not encountered

up to now in the superspace treatment of composites. Because

of this, these atoms can only be consistently introduced in the

JANA program (Petřı́ček et al., 2006) as an extra subsystem,

associated with the common orthogonal cell used as a refer-

ence.

Therefore, for a given N;NL member of the series we choose

as a basis for this common reference subsystem (henceforth

termed subsystem 0) the following vectors (always referred to

the reciprocal cell of the experimental structure)

a�o ¼ a� ¼ ð1; 0; 0Þ

b�o ¼Mb� ¼ ð0;M; 0Þ

c�o ¼ c� ¼ ð0; 0; 1Þ

qo ¼ b� ¼ ð0; 1; 0Þ ¼
1

M
b�o; ð8Þ

with M being either ð2N þ 3Þ or ð2N þ 4Þ for the cases

investigated here. For a fixed N, both choices of M are

possible, and as we will see below they imply the use

of different superspace-group symmetries.

5.1. Choice M = 2N + 4

Let us consider first the choice M ¼ 2N þ 4. The

bases of the subsystems are defined by a pair of

integers ðn; pÞ fulfilling either 3pþ n ¼ 2N þ 4 or

3pþ n ¼ 2N þ 3, and equations (6). Considering (6)

and (8), this implies that the matrix W1 for subsystem

1, expressing the reciprocal basis (6) in terms of the

basis (8) can be given by

W1 ¼

3 �1 0 3p

1 0 0 p

0 0 1 0

0 0 0 1

0
BB@

1
CCA if 3pþ n ¼ M ð9Þ

or

W1 ¼

3 �1 0 3pþ 1

1 0 0 p

0 0 1 0

0 0 0 1

0
BB@

1
CCA if 3pþ n ¼ M � 1: ð10Þ

The inverse of W1 is also an integer matrix, indicating that

any diffraction peak can be indexed in any of the two bases

adapted to each subsystem, as expected in a composite. The

matrix W2 of subsystem 2 (the second module) is symmetry

related to W1 and, according to equations (6), can be obtained

by changing the signs of the second and fourth columns of W1.

On the other hand, W0 for subsystem 0 is the identity, as it is

described in the reciprocal basis (8). qo is taken as the

modulation wavevector for the three subsystems.

The superspace group to be used (in the setting of

subsystem 0) is Bmmmð0; �; 0Þs00, as described in Table 3. As

shown in Table 4, this superspace symmetry is fully consistent

with the three-dimensional space group of the structure. The

atomic domains defining the ideal modular structure are listed

in Table 5. As the atomic domains of subsystem 2 are related

by a symmetry operation with those of subsystem 1, the list of

independent atomic domains includes just atoms of subsys-

tems 0 and 1. For N odd, the three-dimensional structure

corresponds to t ¼ 0 or equivalent sections (see Table 4),

resulting in the location of a Pb atom at the inversion centre,

while for N even, a section t ¼ 1
2M or equivalent (see Table 4)

generates the three-dimensional structure, which then has the

inversion centre on a sulfur atom. This different choice of t

depending on the parity is in fact symmetry forced, because

the other possible high-symmetry t sections would cut the

atomic domains at their mathematical border, breaking the

assumed symmetry or producing half occupied atomic posi-

tions.

Figs. 8 and 9 depict the ðx1; x4Þ and ðx2; x4Þ projections of the

superspace unit cell (in the setting of subsystem 0) of this

initial composite model for lillianite [ðn; pÞ ¼ ð2; 3Þ] and

heyrovskyite [ðn; pÞ ¼ ð3; 5Þ], respectively. These figures show

the atomic domains in superspace that describe the starting

model with the module sublattices given by equation (2).
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Table 3
Operations defining the superspace groups employed in the superspace description
of a lillianite N;NL member, when choosing the basic cell such that � ¼ 1=ð2N þ 4Þ
(first column) or � ¼ 1=ð2N þ 3Þ (second column).

Bmmmð0; �; 0Þs00 Bbmmð0; �; 0Þs00

ðx1; x2; x3; x4Þ, ð
1
2þ x1; x2;

1
2þ x3; x4Þ + ðx1; x2; x3; x4Þ, ð

1
2þ x1; x2;

1
2þ x3; x4Þ +

ðx1; x2; x3; x4Þ ðx1; x2; x3; x4Þ

ð�x1;�x2; x3;�x4Þ ð�x1;�x2; x3;�x4Þ

ð�x1; x2;�x3;
1
2þ x4Þ ð�x1;

1
2þ x2;�x3;

1
2þ x4Þ

ðx1;�x2;�x3;
1
2� x4Þ ðx1;

1
2� x2;�x3;

1
2� x4Þ

ð�x1;�x2;�x3;�x4Þ ð�x1;�x2;�x3;�x4Þ

ðx1; x2;�x3; x4Þ ðx1; x2;�x3; x4Þ

ðx1;�x2; x3;
1
2� x4Þ ðx1;

1
2� x2; x3;

1
2� x4Þ

ð�x1; x2; x3;
1
2þ x4Þ ð�x1;

1
2þ x2; x3;

1
2þ x4Þ

Table 4
Three-dimensional space groups of commensurate structures with
superspace group Bmmmð0; �; 0Þs00 with � ¼ 1=M, M ¼ 2N þ 4 or
Bbmmð0; �; 0Þs00 with � ¼ 1=M, M ¼ 2N þ 3, for different choices of
the real space section, t and i ¼ 0; 1; . . . ;M � 1.

Section Space group

t ¼ i=M Bbmm
t ¼ 1=ð2MÞ þ i=M Bbmm
t ¼ general Bb21m



Using this superspace model one can construct the idealized

structure of lillianite with perfect module sublattices that was

shown in Fig. 1. Of course, the real structure requires addi-

tional displacive modulations to be refined. Note that for

lillianite, the fact that M ¼ 12 does not coincide with 3pþ n

implies that the atomic domains on the ðx2; x4Þ plane are

oblique or sawtooth-like when seen in the setting of subsystem

0, while for heyrovskyite where M ¼ 18 ¼ 3pþ n, they are

vertical, as in the W1 setting. In lillianite the sawtooth domains

have the direction [1,1] on the plane ðx2; x4Þ. This corresponds

to the fact that the atoms of the ideal modules we are building

with this construction have y coordinates of the type i=11 and

not i=12 (i integer). On the other hand, the atomic domains of

heyrovskyite (Fig. 9) are vertical along x4 on the projection

ðx2; x4Þ. This means that the ideal y coordinates of both Pb and

S in the two consecutive modules are given by fractions of the

type i=18. We will see below, however, that the real structures

of both compounds, when refined starting from the models

depicted in Figs. 8 and 9 reach in both cases configurations

which can be considered intermediate between the two idea-

lized models represented by Figs. 8(a) and 9(a), so differences

between the two starting models are blurred.

The composite character of the structure can be seen in the

ðx1; x4Þ projection (Figs. 8b) and 9b), where the S2 and Pb2

atomic domains belong to the second module (subsystem 2),

and are obtained from those of the first module (subsystem 1)

by the given superspace symmetry. The domains in consecu-

tive modules form a zigzag pattern when depicted in this

orthogonal common setting corresponding to subsystem 0.

The resulting x atomic coodinates are those necessary to

produce the oblique ideal galena modules. This zigzag pattern

is in fact fully isomorphous to the pattern formed by rows of

atoms on the plane ðx; yÞ of the real three-dimensional

structure.

In Figs. 8 and 9, one can also see that the above superspace

description stresses the cation deficiency as the basic feature

of the structure. The S domains occupy the whole x4 interval

yielding a total of Mð¼ 2N þ 4Þ atoms on the plane z ¼ 0,

while the Pb domains yield 2N þ 2 occupied atomic positions.

Two pairs of Pb and S atoms with the same y coordinate (the

Pb0 and S0 atomic domains for subsystem 0) are distributed

uniformly along y and fulfill a closeness condition in super-

space, directly related with the modulus of qo, equal to the x4

width of these atomic domains.

In the following, we shall term the above superspace

description of lillianites a modular composite model. It can be

used to construct the ideal structure of any member of the

homologous series with JANA2006. We only have to introduce

the corresponding matrices Wi and the widths of the atomic

domains as given in Table 5, and adjust the free x coordinates

of the S0 and Pb0 atoms. As an example, Fig. 10 shows the

resulting structure for the member 13;13L member with ðn; pÞ

chosen as (5,8).

5.2. Choice M = 2N + 3

The composite description described above has been

obtained choosing the basic unit cell of the reference

subsystem 0 with bo ¼ Mb ¼ ð2N þ 4Þb, which implies that

the modulation wavevector, common for the three subsystems,

is given by b�o=ð2N þ 4Þ. As mentioned above, an alternative

composite superspace description results when using

M ¼ 2N þ 3 (q ¼ b�o=ð2N þ 3Þ). The matrix W1 is then the

same as in the previous case if 3pþ n ¼ M and

W1 ¼

3 �1 0 3p� 1

1 0 0 p

0 0 1 0

0 0 0 1

0
BB@

1
CCA if 3pþ n ¼ M þ 1: ð11Þ

Table 8 in the supplementary material summarizes this alter-

native choice. Also the description of the atomic domains in

the setting of the subsystem 0 becomes reversed with respect

to the previous choice of M. In the case of heyrovskyite, M

does not coincide with 3pþ n and the atomic domains are

oblique or sawtooth-like, while for lillianite where

M ¼ 11 ¼ 3pþ n they are vertical as in the W1 setting. This
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Table 5
Atomic domains in superspace defining an ideal N;NL member of the lilllianite homologous series within the modular composite model (choice
M ¼ 2N þ 4 and superspace group of the first column of Table 3).

The positions of the centres of the atomic domains plus their widths � along x4 are listed. Parameters of subsystem 2 are directly related with those of subsystem 1
by the superspace group symmetry. The parameter n has been defined in x4, equation (2). Parameters printed in bold are refinable. The matrices of the zeroth, first
and second subsystems are the identity, W1 ¼ Wþ and W2 ¼ W�, respectively.

Atom Subsystem x0
1 x0

2 x0
3 x0

4 � Point symmetry Displacive modulation

S0 0 ð7n� 6Þ=12 1/2 0 1/4 1=ð2N þ 4Þ 1 Not used
Pb0 0 ð7n� 10Þ=12 1/2 0 1/4 1=ð2N þ 4Þ 1 Not used
S1 1 0 1/2 0 0 ðN þ 1Þ=ð2N þ 4Þ 112=m (sin,sin,0)
Pb1 1 0 0 0 0 N=ð2N þ 4Þ 112=m (sin,sin,0)

Lillianite Heyrovskyite

W	 ¼

3 �1 0 	10

1 0 0 	3

0 0 1 0

0 0 0 	1

0
BB@

1
CCA W	 ¼

3 �1 0 	15

1 0 0 	5

0 0 1 0

0 0 0 	1

0
BB@

1
CCA



could be taken as an indication that this choice is more natural

for N even. However, as mentioned above, the actual refined

structures described in detail below have displacive modula-

tions which are large enough to make the description inde-

pendent of the parity of N.

6. Refinement of lillianite and heyrovskyite within a
superspace modular composite model

The refinements of lillianite and heyrovskyite within the

modular composite model were started from the idealized

composite model described in the previous section and Table

5. It should be noted that in this approach all cations have

been assumed to have a Pb scattering factor. This is, in fact, in

accordance with the standard refinement of the sulfosalt

crystal structures, because of the negligible difference in the

scattering factors of Pb and Bi in the conventional X-ray

diffraction. Crystal chemical analysis (Pinto et al., 2006)

suggests a pure Pb site for the Pb0 domain and a mixed Pb/Bi

occupancy for the symmetrically independent sites contri-

buting to the present domain Pb1. Apart from the atomic

displacement parameters (ADPs), the only parameters which

are refinable in the starting basic non-modulated structure are

the x coordinates of atoms Pb0 and S0, belonging to subsystem

0. These parameters and the ADPs in the basic structure were

adjusted first. In subsequent refinement cycles the atomic

modulation functions were introduced. For the lillianite

compound, the maximum number of harmonics (two)

consistent with the commensurate character of the structure

was used for atoms S1 and Pb1. In the case of heyrovskyite, the

maximum number of harmonics is three and four for Pb1 and

S1, respectively. However, in the final refined model, three

harmonics were included for both atoms, as the inclusion of

the fourth harmonic for the S1 atom did not improve the

results significantly. For the sake of comparison, the structure

was also refined in three-dimensional space (space group

Bbmm). The transformation of the four-dimensional model to
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Figure 10
Ideal structure of the 13;13L member of the lillianite homologous series
constructed with the modular composite model described in x5.1.

Figure 9
Projection (a) ðx2; x4Þ and (b) ðx1; x4Þ of the atomic domains with x3 ¼ 0
for the modular composite model of heyrovskyite with ideal modules. The
setting used for the superspace and the structural parameters are given in
Table 5 for N ¼ 7 and n ¼ 3. Colour labels are those of Fig. 8.

Figure 8
Projection (a) ðx2; x4Þ and (b) ðx1; x4Þ of the atomic domains with x3 ¼ 0
for the modular composite model of lillianite with ideal modules. The
setting used for the superspace and the structural parameters are given in
Table 5 for N ¼ 4 and n ¼ 2. Red and magenta represent S domains in
subsystems 1 and 2, respectively, while blue and cyan represent Pb
domains in subsystems 1 and 2, respectively. The grey domains in (a)
correspond to the superposition of S0 and Pb0 domains.



the corresponding three-dimensional model (easily achieved

due to the commensurability of the composite model) shows

that – taking into account the standard deviations – all refined

parameters are comparable in the three- and four-dimensional

refinements.

For simplicity, and as the positional atomic modulations do

not vary significantly when modulations of ADP’s are intro-

duced, Table 9 of the supplementary material and Table 6 list

the results for the model with non-modulated ADPs for S1

and Pb1. The R values and the goodness-of-fit values obtained

in the four- and three-dimensional refinements are very

similar. However, there is a significant reduction in the

number of parameters (reduction of 31 and 46% for lillianite

and heyrovskyite, respectively). Except for the para-

meterization of the S1 atomic domain in the heyrovskyite

compound, the reduction on the number of parameters

originates from the use of common ADPs for all atoms asso-

ciated with the same atomic domain.

The refined atomic domains are sketched in Figs. 11 and 12.

The superspace model is represented in these figures using the

setting corresponding to subsystem 0. One can see that the

real structures deviate significantly from the idealized modules

in a way that can be parameterized with a few harmonics.

Note, however, that, due to the commensurability of the

system, the only relevant values of the refined modulations are

those corresponding to the discrete points indicated in the

figures, which represent the actual atomic displacements

realised in the real three-dimensional structure. The values of

the modulation functions outside these points are irrelevant

for the description of the structure, and depend in general on

the parameterization employed for the modulation functions.

In the present case, the use of the lowest harmonics introduces

very long but irrelevant tails of the displacive modulations at

the borders of the atomic domains. One can see in Table 9 of

the supplementary material that there is no clear hierarchy

among the harmonic functions used to describe the displacive

modulation of each atomic domain. These two features are

related, and can be avoided by an appropriate choice of the

harmonics used for the description of the modulation (see x7).

Although the amplitudes of the refined individual harmo-

nics are very large for some components, the actual global

modulations with respect to the starting, perfect, modular

structures are quite small with maximal displacements of the
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Table 6
Results of the three-dimensional structure refinements and superspace refinements in the modular composite and misfit composite descriptions, for the
lillianite and heyrovskyite structures.

R factors are given for all reflections and, for four-dimensional refinements, also for main (m ¼ 0) and satellite reflections up to m ¼ 4 order.

Lillianite
composite Lillianite misfit

Lillianite
three-dimensional

Heyrovskyite
composite

Heyrovskyite
misfit

Heyrovskyite
three-dimensional

Independent/observed
(I>3�) reflections

1004/619 1004/619 1004/619 756/455 756/455 756/455

Parameters 26 26 38 30 36 56
RðobsÞ=RðallÞ
All 0.0496/0.0752 0.0484/0.0726 0.0462/0.0699 0.0421/0.0795 0.0405/0.0779 0.0387/0.0757
m ¼ 0 0.0508/0.0816 0.0514/0.0855 0.0478/0.0679 0.0552/0.0973
m ¼ 1 0.0527/0.0724 0.0460/0.0657 0.0426/0.0763 0.0367/0.0876
m ¼ 2 0.0505/0.0810 0.0426/0.0696 0.0343/0.0611 0.0321/0.0706
m ¼ 3 0.0475/0.0691 0.0461/0.0621 0.0431/0.0885 0.0397/0.0664
m ¼ 4 0.0477/0.0704 0.0589/0.0822 0.0450/0.0920 0.0387/0.0805
GoF(obs)/GoF(all) 2.12/1.71 2.10/1.70 2.05/1.65 1.59/1.41 1.65/1.45 1.48/1.32

Figure 11
Projection ðx2; x4Þ of the refined atomic domains with x3 ¼ 0 for the
modular composite model of (a) lillianite and (b) heyrovskyite. The
refined parameters are given in Table 9 of the supplementary material.
Colour labels are as given in Figs. 8 and 9. The lines (dashed lines)
corresponding to the competing periodicities discussed in the text are
indicated.



order of 0.1–0.3 Å being somehow larger in the y direction

than in the others. In Fig. 11 one must take into account that

the basic unit cell used for the superspace construction is only


 1.7 Å along the y direction. Hence, the scale of these figures

emphasizes the atomic displacements along y with respect to

those along x, as depicted in Fig. 12. In the ðx1; x4Þ plane the

zigzag form of the atomic domains is essentially maintained,

while in the ðx2; x4Þ plane one can distinguish a clear tendency

of the domains to orientate along the direction 0; 1; 0; 1½ � of

the 3+1-dimensional space, as shown in the figures. This

orientation was already present in the starting model of

lillianite, but not in heyrovsyite (see Figs. 8a and 9a). As

indicated in Fig. 11, in the case of heyrovskyite, perfect linear

domains along the direction 0; 1; 0; 1½ � of the 3+1-dimensional

space would correspond to an ordered arrangement of the

atoms along the y direction separated by intervals of b=17,

instead of the b=18 value introduced in the (3,5) ideal lattice

used for the superspace construction. As there are 34 atoms in

the z ¼ 0 plane, this means that the system tends to produce

an overall periodic sequence along y, with atomic positions

separated by b=34, without making the distinction of the type

of atom, Pb or S. These atoms, in fact, exchange their role in

the approximate b=34 periodic sequence along y when passing

from one module to the next. It thus seems clear that the

choice of superspace embedding with � ¼ 1=ð2N þ 3Þ

(M ¼ 2N þ 3) for the description of the composite would

yield, in general, smaller modulations when seen in the global

superspace setting. However, in this composite description the

modulations of each subsystem are referred to its own average

structure, and therefore their actual magnitude and para-

meterization will not change in practice. A simple way to take

into account a priori this general tendency would be to

introduce in the starting composite model a fixed linear

sawtooth function with a slope corresponding to the 0; 1; 0; 1½ �

direction of the 3+1-dimensional space for both the Pb and the

S atomic domains. This would be convenient for heyrovskyite,

but not necessarily in the case of lillianite, since here

3pþ n ¼ 2N þ 3, and the atomic domains already have the

shape of sawtooth functions in the global superspace setting

(see Fig. 8a).

Another competing distance along y is b=16. This corre-

sponds to a y equidistant configuration of the 16 Pb atoms.

This periodicity leads to a slope given by the direction

0; 2; 0; 1½ � in the plane (x2; x4). It can be seen in Fig. 11(b) that

this periodicity is also somehow latent in the configuration

taken by the Pb atoms, especially considering the presence of

the single Pb0 atom at ðx2; x4Þ ¼ ð1=2; 1=4Þ. One can in fact

make an alternative description considering the direction

0; 2; 0; 1½ � as the existence line in superspace for the Pb atoms,

while keeping the vertical direction 0; 0; 0; 1½ � for the S atoms.

This allows the introduction of continuous atomic domains for

S and Pb. This way, we arrive at what we can call a misfit

structure, where the misfit occurs between the set of (b=18

separated) S atoms and the (b=16 separated) Pb atoms. The

modular character of the structure must then be introduced as

an additional feature by aprioristic large zigzag modulations

for the x1 coordinate. This approach will be discussed in detail

in x8.

7. The use of zigzag functions

It can be seen in Figs. 8 and 9 that the composite description

developed above can in fact be considered equivalent to a

single modulated structure with approximate sawtooth-like

atomic domains, all of which are defined in the setting of

subsystem 0. The approximate slopes of these atomic domains

on the plane ðx1; x4Þ correspond to well defined directions

determined by the W matrices, namely directions ½3;	1� and

½5;	1� for lillianite and heyrovskyite, respectively. We can

then describe the structure as a single modulated structure

with a basic unit cell given by fa; b=ð2N þ 4Þ; cg and with a

modulation wavevector q ¼ b�. The superspace group to be

considered is Bmmmð0; �; 0Þs00, the same as that used for the

composite description and given in Table 3. A peculiar feature

of the resulting superspace model is that the amplitudes of the

necessary sawtooth modulations are very large, crossing

several cells. These large amplitudes are however no obstacle

in JANA2006 (Petřı́ček et al., 2006) for using a single modu-

lated structure model. In this description we do not need to

divide the structure into subsystems, so we do not require the

introduction of the matrices W1 and W2 given above. Instead,

the (fixed) amplitude of the sawtooth functions corresponding
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Figure 12
Projection ðx1; x4Þ of the refined atomic domains with x3 ¼ 0 for the
modular composite model of (a) lillianite and (b) heyrovskyite. The
refined parameters are given in Table 9 of the supplementary material.
Colour labels as in Figs. 8 and 9.



to the ideal reference sublattice, shown in Figs. 8 and 9, should

be introduced explicitly in the starting model and these

amplitudes are dependent on the N value of the series

member.

The description of the structure as a single modulated

system has an important advantage. In Figs. 8(b) and 9(b), one

can see that at least for the x ¼ x1 coordinate, the separation

into different domains of the S0 and Pb0 atoms is quite arti-

ficial. Their positions are approximately continuous with those

of the other two subsystems. They can be considered

approximate vertices of a continuous zigzag function. In order

to deal with this type of modulation, the use of continuous

zigzag modulation functions has been implemented in

JANA2006. These functions can now be parameterized in

JANA2006 as shown in Fig. 13. One of the linear elements of

the function is defined as it is usually done with sawtooth

functions, namely by means of its centre along the internal

space x0
4, its width � and an amplitude uzz

0;i for each compo-

nent. The second linear element of the function is then given

by a sawtooth with opposite slope and centred at x0
4 þ 1=2. For

�< 1=2, the resulting function is almost equivalent to two

symmetry-related sawtooth atomic domains, while for

� ¼ 1=2 it produces a triangular function, as shown in Fig.

13(b). In fact, to our knowledge, the combination of two saw-

tooth functions to create a triangular atomic domain was used

for the first time in the structure refinement of the incom-

mensurately modulated phase of perylene (Lam et al., 1995).

However, the use of two symmetry-related and matched

sawtooth functions produces double-valued points at the

vertices and when the t section contains one of these vertices,

the section gives rise to two atoms at the same position in the

three-dimensional structure. This singularity is not a serious

problem for incommensurately modulated structures, or even

for a commensurate structure if the t section does not contain

any of the vertices of the matched sawtooth but, for lillianite

and heyrovskite, the relevant t section does contain the

vertices of the zigzag, and it was necessary to modify

JANA2006 to avoid double-valued points. The newly imple-

mented zigzag option avoids these singularities and, therefore,

the only difference between the zigzag functions and a couple

of matched symmetry-related sawtooth functions are,

precisely, the vertices.

As the different S atomic domains on the plane x3 ¼ 0 and

within a unit cell occupy the whole x4 interval without over-

lapping, one can describe all S atoms with a single atomic

domain defined all along the internal space as a zigzag func-

tion with � ¼ 1=2 and only non-zero amplitude uzz
0;i along x.

The value of uzz
0;1 can be derived with the help of Figs. 1 and 2,

considering the line of S atoms along the octahedra (coloured

red in Fig. 1 and yellow in Fig. 2) between the layers at y ¼ 1=4

and y ¼ 3=4. There are N þ 2 intervals separating S atoms,

and the difference in the value of the x coordinate of conse-

cutive atoms is close to 1/4. Therefore, the width along x1 of

each of the linear elements of the zigzag function is ðN þ 2Þ=4

and uzz
0;1 ¼ �ðN þ 2Þ=8. The minus sign means that it has been

chosen as x0
4, the x4 coordinate of the centre of the linear

element with the negative slope (see Fig. 13).

The use of a zigzag function for S atoms not only reduces

the number of independent S atomic domains in superspace to

a single one, but also introduces a more efficient para-

meterization of the additional displacive modulation functions

to be refined. The harmonics to be added are constrained by

all operations of the superspace group and this avoids the

spurious tails obtained in the composite model where the

symmetry constraints for the modulation harmonics within

each disconnected atomic domain are less restrictive.

In the case of the Pb atoms, the domains are not connected

along x4, and therefore one cannot define a single continuous

atomic domain, but the two disconnected atomic domains Pb1

and Pb2 describing the Pb atoms within the two modules

(treated as two different subsystems in the composite

approach) can be described as a single zigzag function with

� ¼ N=ð2N þ 4Þ< 1=2 (plus additional displacive harmonics

to be refined). As in the case of the S atoms, the treatment of

the two atomic domains as part of a single zigzag function

introduces global symmetry constraints on the refinable

displacive harmonics. A drawback of this model is that, as in

the composite description, the Pb0 atom has to be treated

separately as a single monoatomic domain.

The results of the refinements of the lillianite and hey-

rovskyite structures within this approach, i.e. as single modu-

lated structures with zigzag functions, are equivalent to those

research papers

696 Luis Elcoro et al. � Modular crystals as modulated structures Acta Cryst. (2008). B64, 684–701

Figure 13
Parameters in the new option of JANA2006 describing a zigzag function:
(a) case �< 0:5; (b) case � ¼ 0:5 corresponding to a continuous zigzag
line.



reported above for the composite approach. In contrast to the

composite approach, ADPs of S0 are quite different from

those of the other S atoms. Consequently, in this case a

modulation of these ADPs for the S domain is important to

reach an optimal fit. Note that in the refinements the para-

meters of the two zigzag functions were fixed, as they are the

reference which corresponds to the idealized modules

discussed in previous sections and only displacive harmonics

were refined. In any case, a refinement of the parameters

describing the zigzag function is not advisable since they

would be strongly correlated with the first harmonic of the

refined displacive modulation function. Tables with the details

of these refinements can be found in the supplementary

material (Tables 10 and 11). A graphical scheme of the final

refined model of heyrovskyite can be seen in Fig. 14. Although

the points in superspace defining the actual atomic positions in

real space are essentially identical to those of the composite

refinement, the modulations of the continuous functions

defining the associated atomic domains are smoother and

better behaved. This should make these functions more

invariant to composition, i.e. more transferable to other more

complex compositions.

8. Lillianite and heyrovskyite within a Pb–S misfit
composite model

The results obtained so far suggest a third approach to the

superspace description of these structures. It should be

possible to treat them as a conspicuous misfit compound, with

one subsystem formed by the S atoms and a second one by the

Pb atoms. We have seen above that the y coordinates of the S

and Pb atoms within a ðx; yÞ layer, when seen in superspace,

tend to form an approximate equidistant array with the period

b=ð2N þ 3Þ within the modules. This feature is again high-

lighted in Fig. 14 for the case of heyrovskyite. The number of S

and Pb atoms within the supercell is, however, 2N þ 4 and

2N þ 2, respectively, and, as pointed out earlier, this compo-

sition misfit is at the origin of the

compound series. While chemically a 1:1

proportion of S and Pb atoms is

preferred on a local basis, the system is

forced to accommodate the Pb deficit

corresponding to the actual composition

stemming from the introduction of a

cation with a higher valence (Bi for Pb).

It is therefore desirable to devise a

starting reference structure in super-

space which stresses this misfit between

S and Pb atoms. For this model the

description of the S atoms is main-

tained, i.e. a basic unit cell

fa; b=ð2N þ 4Þ; cg, a wavevector q ¼ b�

and a single independent zigzag func-

tion. The Pb atoms, however, are now

considered as forming a second

subsystem with the basic unit cell

fa; b=ð2N þ 2Þ; cg and a modulation wavevector of q ¼ b�, so

that in the starting non-modulated basic structure the y

coordinates of the ð2N þ 2Þ Pb atoms are equidistant. This

description represents the introduction of a new concept for

the treatment of these compounds as composites, as now the

subsystems are not formed by the modules, but by the Pb and

S atoms, respectively. In Fig. 14 this composite misfit Pb–S

approach corresponds to considering a continuous existence

line for the Pb atoms along the superspace direction ½0; 2; 0; 1�,

if the structure is described in the setting of the S subsystem.
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Figure 14
Projections (a) ðx2; x4Þ and (b) ðx1; x4Þ of the refined atomic domains with
x3 ¼ 0 for the model of x7. The structural and refined parameters are
given in Tables 10 and 11 of the supplementary material, respectively.

Table 7
Atomic domains in superspace defining an ideal N;NL member of the lilllianite homologous series
within the Pb–S misfit composite model (choice M ¼ 2N þ 3 and superspace group of the second
column of Table 3).

The positions of the centres of the atomic domains plus their widths � along x4, and values of the zigzag
function along x1 (uzz

0;1) are listed. In the last two columns, the point symmetry of the centre of the atomic
domain and the corresponding form of the displacive modulation (odd sine terms and even cosine terms
for the x and y components of the modulation, and no modulation at all for the z component) are included.
The matrices of the first, second and third subsystems are the identity, Wþ and W�, respectively.

Atom Subsystem x0
1 x0

2 x0
3 x0

4 � uzz
0;1

Point
symmetry Displacive modulation

S 1 1/2 1/2 0 0 1/2 �ðN þ 2Þ=8 mmm (sin(odd),sin(even),0)
Pb 2 0 0 0 0 1/2 �ðN þ 1Þ=8 mmm (sin(odd),sin(even),0)

W	 ¼

1 0 0 0

0 1 0 	1

0 0 1 0

0 0 0 1

0
BB@

1
CCA



The three-dimensional positions of the ð2N þ 2Þ Pb atoms can

now be described with a single independent atomic domain,

which includes the Pb0 atoms and this, in turn, allows the

introduction of a continuous triangular zigzag modulation

function for the Pb atomic domain within its particular basic

unit cell as the starting model for refinement. The amplitude of

this zigzag function is given by uzz
0;1 ¼ �ðN þ 1Þ=8, which can

be readily derived using the same arguments of the preceding

section for the amplitude of the S atomic domain.

Fig. 15 shows the resulting starting model for refinement in

superspace and Fig. 16 depicts the corresponding structure in

real space for heyrovskyite. In this structure the modules,

while keeping locally the right topology, deviate considerably

from the archetype substructure. The approximate galena

modules should then be recovered by the additional displacive

atomic modulations to be refined. In other words, while in the

composite description of x6 the modulations essentially

describe deviations of the modules from the defined idealized

sublattices close to the galena structure, the modulations here

should in fact approximate the more distorted modules to the

ideal galena structure, starting from a reference structure,

where a regular separate distribution of S and Pb atoms is

considered. Note that this composite model has a peculiar

feature: in contrast with the usual incommensurate compo-

sites, an a priori fixed modulation function along x is included

in the starting model for both subsystems, as given by the two

zigzag functions.

From the results obtained earlier we know that the S and Pb

atoms tend to form arrangements with y coordinates equidi-

stant by b=ð2N þ 3Þ within the modules. It is therefore

convenient to use this distance, bav � b=ð2N þ 3Þ, inter-

mediate between those favoured by S and Pb atoms, as the

reference basic lattice for the superspace construction. We

therefore introduce in JANA2006 a subsystem 0 with no atoms

but with its basic lattice given by fa; bav � b=ð2N þ 3Þ; cg and

a modulation wavevector q ¼ b�. This first subsystem deter-

mines the basis of four reciprocal vectors to be used for the

definition of the other subsystems by means of their W

matrices. The reciprocal bases considered for the S and Pb

subsystems differ only in the choice of the reciprocal basic

lattice vector along y. For the S subsystem

b�S ¼ ð2N þ 4Þb� ¼ b�av þ b�, while for the Pb subsystem

b�Pb ¼ ð2N þ 2Þb� ¼ b�av � b�. Therefore, the corresponding W

matrices are very simple. They are given in Table 7, together

with the parameters that define the single independent atomic

domains associated with each subsystem. In the setting of

subsystem 0 the superspace group to be considered is

Bbmmð0; �; 0Þs00, listed in the second column of Table 3. Fig.

17 shows the same starting model as shown in Fig. 15 for

heyrovskyite but using this intermediate basic unit cell. Only

the ðx2; x4Þ projection is shown, since the other projection on

the plane ðx1; x4Þ does not change. The existence line of the S

atoms now follows the oblique direction ½1;�1� within the

ðx2; x4Þ plane, which corresponding to a longer diagonal within

the unit cell and gives rise to 18 (i.e. 2N þ 4) atomic positions,

while the Pb existence line follows the ½1; 1� direction,

resulting in only 16 distinct atomic positions per atomic

domain. The use of this intermediate superspace setting by

means of a void zeroth subsystem does not mean any change

in the parameterization of the modulations in subsystems S

and Pb, as the modulations in these subsystems are defined

with respect to their own superspace bases.

There are important differences between the misfit

composite model and the other two approaches used in the

present work. The difference between the modular composite

and misfit composite approach are the subsystems considered.

While in the composite modular model the two subsystems are

two Pb–S galena blocks with different orientations, in the

misfit composite approach S and Pb atoms are separated into

two different subsystems. The intermediate model of x7 is a

purely modulated model (no composite approach) with zigzag

functions for both S and Pb. The difference with the the S–Pb

misfit composite model used in this section is not only that in

one case the zigzag function of Pb is broken and the other not,

but that in the misfit composite model the system is treated as

a composite and the Pb is taken as a second subsystem with its

own average periodicity along the y axis different from that of

S (this is what allows us to make a continuous zigzag function

for Pb). However, in the intermediate model the average

periodicity along the y axis is the same for S and Pb, and this

necessarily forces the atomic domains of Pb along the internal

space to be discontinuous, with some voids.

Refinements of lillianite and heyrovskyite within the misfit

composite model converged smoothly. The results are
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Figure 15
(a) ðx2; x4Þ and (b) ðx1; x4Þ projections of the starting refinable model in
the misfit composite approach given in Table 7 for heyrovskyite. The
setting used for the superspace is that of the S subsystem. Colour labels as
in Figs. 8 and 9.



summarized in Table 6 and Table 12 of the supplementary

material, and are depicted in Figs. 18 and 19, where they are

represented using the setting of subsystem 0. The atomic

positions corresponding to the inner part of the modules have

been highlighted in the figure. In the case of heyrovskyite one

can clearly see how these atoms arrange regularly along the y

axis with an intermediate distance of b=17. Especially the Pb

atoms deviate very little from a vertical configuration along x4

(one should note that the basic unit cell along y is of the order

of 1.8 Å). In the case of the S atoms, the influence of the

interface between modules affects not only the atom posi-

tioned at the interface, but also the two neighbouring ones. In

the case of the modulation functions along x1, the refinement

has introduced the expected parallelism between the zigzag

functions of S and Pb atoms, which the starting misfit model

lacked (see Fig. 15b). This, together with the approximate b=17

periodicity along the y direction, produces the approximate

regular galena structure of the modules present in the real

structure (Fig. 2).

Although under this approach the modulations added to the

starting model are rather large, the refinements behaved well.

It can be seen in Table 12 of the supplementary material that,

in contrast with the refinement carried out under the modular

composite model, the amplitudes of the refined harmonics

keep a clear hierarchy depending on their order. While in

lillianite the atomic domains in superspace describe too small

a number of atomic positions in real space, in the case of

heyrovskyite this number is sufficiently large for the super-

space description to be more efficient and economical than the

conventional approach. The number of parameters refined to

describe the positional modulations is 12, while a conventional

approach requires 16. The four and five crystallographically

independent positions of the Pb and S atoms can be described

by six harmonic amplitudes in each case. However, the

number of ADPs for the Pb atom is larger than the total

number of ADPs of the Pb0 and Pb1 atoms in the modular

composite approach. The atoms which belong to the Pb1

atomic domain in the composite approach are inside the

shaded regions of the Fig. 18, i.e. inside the galena blocks. They

have similar neighbourhoods and, consequently, the use of a

common ADP is sufficient (Table 9 of the supplementary

material). However, the Pb0 atom has a very different

neighbourhood and, as a consequence, different ADPs. In the

misfit composite model, in which all the Pb atoms belong to

the same atomic domain, modulations of the ADPs are

necessary to reproduce the variation of these parameters for

different atoms in the resulting three-dimensional structure.

This can be a serious problem for higher members of the
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Figure 16
Idealized heyrovskyite for the misfit composite model (without displacive
modulations). The meaning of the colour and atom sizes are the same as
in Figs. 1 and 2.

Figure 17
ðx2; x4Þ projection of the starting model in the misfit composite approach
given in Table 7 (equivalent to Fig. 15), but in the setting intermediate
between those of the S and Pb subsystems. In this setting, the ðx1; x4Þ

projection is identical to that given in Fig. 15.

Figure 18
Projection ðx2; x4Þ of the refined atomic domains with x3 ¼ 0 for the misfit
composite model of (a) lillianite and (b) heyrovskyite. The refined
parameters are given in Table 12 of the supplementary material. Colour
labels as in Figs. 8 and 9. The lines corresponding to a periodicity (a) b=10
(blue) and b=12 (red) and (b) b=16 (blue) and b=18 (red) are indicated.
Shaded regions represent the slightly distorted galena blocks inside the
modules (see Figs. 1 and 2).



series. In some cases it could be convenient to separate the Pb

atomic domain in two parts to avoid the inclusion of a large

number of Fourier terms to force the modulation to be a step-

like function.

The R factors obtained are comparable to those obtained in

the modular composite approach and in the three-dimensional

refinements (see Table 6). What is even more important is that

judging from the aspect of the modulation functions of hey-

rovskyite as shown in Figs. 18 and 19, one expects that these

modulations will be fairly invariant when compounds with

larger modules are considered. This opens the possibility of

refining more complex members of the series having larger

unit cells such as ourayite (11;11L), without a significant

increase of the refinement parameters.

9. Conclusions

We have shown that the lillianite compounds, a homologous

series of modular structures with two identical symmetry-

related modules of variable size and having two different

orientations, can be efficiently described and refined as

commensurate modulated structures using the tools of the

superspace formalism, originally developed for incommensu-

rate modulated structures. Three alternative superspace

models have been successfully applied. First, a so-called

modular composite model has been used, in which the struc-

ture is described as a modulated composite with two basic

subsystems formed by the atoms belonging to each type of

module. However, in this model the atoms at the interface

between modules had to be treated separately. A second

model as a single modulated structure is also possible if so-

called linear zigzag functions with large amplitudes are

introduced in the parameterization of the atomic modulations.

Finally, the use of these zigzag functions allows us to introduce

a third description of the structures as misfit composite

materials where the cations form one subsystem and the

anions form the other one. This third approach appears to be

the most robust and efficient, as the sets of all cations and

anions are described by single independent atomic domains.

While all three models allow refinements comparable with

those of conventional three-dimensional methods, especially

the last model requires fewer refinable parameters and, in

addition, their number does not scale with the size of the unit

cell. The methodology can in principle be extended to other

compound families with similar modular features, and opens

new possibilities for the structural analysis of compounds in

series with very large unit cells.

APPENDIX A
Optimal sublattices for a modulated description

In x4 it was shown that the reference galena sublattice to be

used in a modulated composite description of the structures is

defined by a pair of integers ðn; pÞ and equations (2). The
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Figure 19
Projection ðx1; x4Þ of the refined atomic domains with x3 ¼ 0 for the misfit
composite model of (a) lillianite and (b) heyrovskyite. The refined
parameters are given in Table 12 of the supplementary material. Colour
labels as in Figs. 8 and 9.

Figure 20
(a) Scheme of the geometrical relation connecting the unit cell of the
global structure and the magnitudes of the sublattice vectors defined by
(2), for an ideal unstrained sublattice, and a global orthogonal unit cell.
(b) Relation between ðn; pÞ and N, and determination of the b parameter
of the global unit cell in the case of ideal unstrained sublattices of the
N;NL member of the series.



optimal ðn; pÞ values that would yield the least strained

sublattice with respect to that of the ideal gallena can be

calculated as follows.

In an ideal sublattice, unstrained with respect to the galena

lattice, the ratios a1;2=c1;2 and b1;2=c1;2 are 1 and 21=2, respec-

tively, and the lattice is orthogonal. Fig. 20(a) shows a scheme

of the geometrical relation connecting the unit cell of the

global structure and the magnitudes of the sublattice vectors

defined by (2), in the specific case of an ideal unstrained

sublattice, and a global orthogonal unit cell. One can see that

necessarily b1=3a1 ¼ na1=pb1 and, therefore, considering that

b1 ¼ 21=2a1, for this particular unstrained situation, the ðn; pÞ

values should satisfy (4).

On the other hand, in a fully unstrained situation for the

sublattices corresponding to an N;NL member of the series, the

indices ðn; pÞ can be related with N, as shown schematically in

Fig. 20(b). The parameter b of the global unit cell would be

given by

b ¼ ð2N þ 4Þa1 sin ’: ð12Þ

Alternatively, from Fig. 20(a), one can write

b ¼ 21=2pa1 cos ’þ na1 sin ’: ð13Þ

Considering that tan ’ ¼ 21=2=3, the compatibility of the two

equations implies equation (5).

In general, (4) and (5) cannot be satisfied at the same time

with integer ðn; pÞ values. The best option can be obtained

considering the integer values which are closer to the non-

integer solution of these equations.
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Takagi, J. & Takéuchi, Y. (1972). Acta Cryst. B28, 649–651.
Takeuchi, Y. & Takagi, J. (1974). Proc. Jpn Acad. 50, 76–79.
Wolff, P. M. de (1974). Acta Cryst. A30, 777–785.

research papers

Acta Cryst. (2008). B64, 684–701 Luis Elcoro et al. � Modular crystals as modulated structures 701


